Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.272
Filtrar
1.
Mol Genet Genomic Med ; 12(4): e2419, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38572916

RESUMO

BACKGROUND: Anoikis resistance is a hallmark characteristic of oncogenic transformation, which is crucial for tumor progression and metastasis. The aim of this study was to identify and validate a novel anoikis-related prognostic model for prostate cancer (PCa). METHODS: We collected a gene expression profile, single nucleotide polymorphism mutation and copy number variation (CNV) data of 495 PCa patients from the TCGA database and 140 PCa samples from the MSKCC dataset. We extracted 434 anoikis-related genes and unsupervised consensus cluster analysis was used to identify molecular subtypes. The immune infiltration, molecular function, and genome alteration of subtypes were evaluated. A risk signature was developed using Cox regression analysis and validated with the MSKCC dataset. We also identify potential drugs for high-risk group patients. RESULTS: Two subtypes were identified. C1 exhibited a higher level of CNV amplification, immune score, stromal score, aneuploidy score, homologous recombination deficiency, intratumor heterogeneity, single-nucleotide variant neoantigens, and tumor mutational burden compared to C2. C2 showed a better survival outcome and had a high level of gamma delta T cell and activated B cell infiltration. The risk signature consisting of four genes (HELLS, ZWINT, ABCC5, and TPSB2) was developed (area under the curve = 0.780) and was found to be an independent prognostic factor for overall survival in PCa patients. Four CTRP-derived and four PRISM-derived compounds were identified for high-risk patients. CONCLUSIONS: The anoikis-related prognostic model developed in this study could be a useful tool for clinical decision-making. This study may provide a new perspective for the treatment of anoikis-related PCa.


Assuntos
Anoikis , Neoplasias da Próstata , Masculino , Humanos , Prognóstico , Anoikis/genética , Variações do Número de Cópias de DNA , Neoplasias da Próstata/genética , Aneuploidia
2.
Cell Signal ; 118: 111141, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38492624

RESUMO

Cholangiocarcinoma (CCA) is a malignancy with an extremely poor prognosis, and much remains unknown about its pathogenesis and treatment modalities. Circular RNA (circRNA) has been proven to play regulatory roles in various tumorigenesis, yet its potential function and mechanism in cholangiocarcinoma require further investigation. This study is the first to identify the aberrant expression and functional role of a novel circRNA, circ_0007534, derived from the DDX42 gene, in cholangiocarcinoma. Compared to the normal control group, the expression of circ_0007534 was significantly elevated in the tissues and cells with CCA and that high expression correlated with lymph node invasion and poor prognosis. Functional experiments indicated that downregulating circ_0007534 markedly inhibited the proliferation, migration, invasion, stemness, and anti-anoikis ability of CCA cells, as well as the tumor growth and liver and lung metastasis in nude mice. Mechanistic studies revealed that DDX42, as the parent gene of circ_0007534, can mutually regulate each other's expression. Predominantly located in the cytoplasm, circ_0007534 can form a complex with the RNA-binding protein DDX3X, which enhances the stability of DDX42 mRNA, thereby upregulating the expression of DDX42. This creates a positive feedback loop among the three, collectively promoting the progression of cholangiocarcinoma. In conclusion, this study sheds light on the pivotal role and molecular mechanism of circ_0007534 in the development of CCA, offering potential new targets for early diagnosis and treatment.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , MicroRNAs , Animais , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Circular/genética , RNA Circular/metabolismo , Anoikis , Camundongos Nus , Retroalimentação , Linhagem Celular Tumoral , Colangiocarcinoma/genética , Colangiocarcinoma/metabolismo , Ductos Biliares Intra-Hepáticos/metabolismo , Neoplasias dos Ductos Biliares/genética , Neoplasias dos Ductos Biliares/metabolismo , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Movimento Celular/genética
3.
Anticancer Drugs ; 35(5): 466-480, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38507233

RESUMO

Anoikis is a programmed cell death process triggered when cells are dislodged from the extracellular matrix. Numerous long noncoding RNAs (lncRNAs) have been identified as significant factors associated with anoikis resistance in various tumor types, including glioma, breast cancer, and bladder cancer. However, the relationship between lncRNAs and the prognosis of hepatocellular carcinoma (HCC) has received limited research attention. Further research is needed to investigate this potential link and understand the role of lncRNAs in the progression of HCC. We developed a prognostic signature based on the differential expression of lncRNAs implicated in anoikis in HCC. A co-expression network of anoikis-related mRNAs and lncRNAs was established using data obtained from The Cancer Genome Atlas (TCGA) for HCC. Cox regression analyses were conducted to formulate an anoikis-related lncRNA signature (ARlncSig) in a training cohort, which was subsequently validated in both a testing cohort and a combined dataset comprising the two cohorts. Receiver operating characteristic curves, nomograms, and decision curve analyses based on the ARlncSig score and clinical characteristics demonstrated robust predictive ability. Moreover, gene set enrichment analysis revealed significant enrichment of several immune processes in the high-risk group compared to the low-risk group. Furthermore, significant differences were observed in immune cell subpopulations, expression of immune checkpoint genes, and response to chemotherapy and immunotherapy between the high- and low-risk groups. Lastly, we validated the expression levels of the five lncRNAs included in the signature using quantitative real-time PCR. In conclusion, our ARlncSig model holds substantial predictive value regarding the prognosis of HCC patients and has the potential to provide clinical guidance for individualized immunotherapy. In this study, we obtained 36 genes associated with anoikis from the Gene Ontology and Gene Set Enrichment Analysis databases. We also identified 22 differentially expressed lncRNAs that were correlated with these genes using data from TCGA. Using Cox regression analyses, we developed an ARlncSig in a training cohort, which was then validated in both a testing cohort and a combined cohort comprising data from both cohorts. Additionally, we collected eight pairs of liver cancer tissues and adjacent tissues from the Affiliated Tumor Hospital of Nantong University for further analysis. The aim of this study was to investigate the potential of ARlncSig as a biomarker for liver cancer prognosis. The study developed a risk stratification system called ARlncSig, which uses five lncRNAs to categorize liver cancer patients into low- and high-risk groups. Patients in the high-risk group exhibited significantly lower overall survival rates compared to those in the low-risk group. The model's predictive performance was supported by various analyses including the receiver operating characteristic curve, nomogram calibration, clinical correlation analysis, and clinical decision curve. Additionally, differential analysis of immune function, immune checkpoint, response to chemotherapy, and immune cell subpopulations revealed significant differences between the high- and low-risk groups. Finally, quantitative real-time PCR validated the expression levels of the five lncRNAs. In conclusion, the ARlncSig model demonstrates critical predictive value in the prognosis of HCC patients and may provide clinical guidance for personalized immunotherapy.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , RNA Longo não Codificante , Humanos , Carcinoma Hepatocelular/genética , RNA Longo não Codificante/genética , Anoikis/genética , Neoplasias Hepáticas/genética , Prognóstico
4.
Eur J Pharmacol ; 969: 176462, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38431242

RESUMO

Pancreatic cancer is an extremely malignant tumor, and only a few clinical treatment options exist. MFG-E8 and kindlin-2 all play an important role in cancer progression. However, the specific mechanism occurring between MFG-E8, kindlin-2 and the migration and invasion of pancreatic cancer cells remains unelucidated. To unravel the specific mechanism, this study assessed the potential association between MFG-E8 and kindlin-2 as well as the involvement of MFG-E8 in pancreatic cancer using two pancreatic cancer cell lines (MiaPaCa-2 and PANC-1). Pancreatic cancer cells were treated with 0, 250, and 500 ng/ml MFG-E8, and the effects of MFG-E8 on the migration, invasion, and anoikis of pancreatic cancer cells were observed. To investigate the role of kindlin-2 in pancreatic cancer, kindlin-2-shRNAi was transfected to knock down its expression level in the two pancreatic cancer cell lines. Furthermore, cilengitide, a receptor blocker of MFG-E8, was used to explore the relationship between MFG-E8, kindlin-2, and pancreatic cancer progression. Our findings demonstrated that MFG-E8 promotes the migration and invasion of pancreatic cancer cells and induces cell anoikis resistance in a dose-dependent manner, which was effectively counteracted by cilengitide, a receptor blocker. Additionally, the knockdown of kindlin-2 expression nullified the effect of MFG-E8 on the migration and invasion of pancreatic cancer cells. Consequently, this study provides insights into the specific mechanism underlying the interplay between MFG-E8 and kindlin-2 in the progression of pancreatic cancer cells.


Assuntos
Anoikis , Neoplasias Pancreáticas , Humanos , Linhagem Celular , Pâncreas , Neoplasias Pancreáticas/genética , Transição Epitelial-Mesenquimal
5.
Cell Mol Biol (Noisy-le-grand) ; 70(2): 51-61, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38430038

RESUMO

Anoikis emerges when a cell finds itself extricated from the appropriate extracellular matrix, leading to an interruption in integrin ligation and thus triggering programmed cellular demise. The cardinal role of Anoikis in the realms of tumor invasion and metastasis is undeniable, although our grasp on its precise influence within the convoluted landscape of cancer biology remains somewhat circumscribed. Notably, both the immune milieu of the tumor and its inherent aggression are correlated with the fluctuating variables of Anoikis. We conducted a thorough evaluation of the genes associated with anoikis and studied the regulatory patterns of these genes as well as the prognostic impact of anoikis in 33 different types of tumors. We provided functional annotations for the regulatory patterns linked to Anoikis. Additionally, we described the associations between immunological factors and genes associated with Anoikis. By applying gene set variation analysis (GSVA), we utilized the inherent abilities of 34 basic genes to calculate the Anoikis index. The Anoikis index is closely related to prognosis, immune microenvironment, immunotherapy, and other aspects. Our functional research revealed a correlation between immune cell infiltration, EMT, and a regulatory gene that is synonymous with adverse survival outcomes. In addition, our observations revealed a direct relationship between the expression of CEACAM5 and CEACAM6,the amplification of epithelial mesenchymal transition (EMT) phenomenon, and a decrease in survival outcomes.The potential therapeutic utility of anoikis-related genes was highlighted by the possible links between TME, clinical samples, genetic mutations, drug resistance, and immunotherapy.


Assuntos
Anoikis , Neoplasias , Humanos , Anoikis/genética , Linhagem Celular Tumoral , Neoplasias/genética
6.
J Cell Mol Med ; 28(8): e18264, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38526027

RESUMO

Acute myocardial infarction (AMI) increasingly precipitates severe heart failure, with diagnoses now extending to progressively younger demographics. The focus of this study was to pinpoint critical genes linked to both AMI and anoikis, thereby unveiling potential novel biomarkers for AMI detection and intervention. Differential analysis was performed to identify significant differences in expression, and gene functionality was explored. Weighted gene coexpression network analysis (WGCNA) was used to construct gene coexpression networks. Immunoinfiltration analysis quantified immune cell abundance. Protein-protein interaction (PPI) analysis identified the proteins that interact with theanoikis. MCODE identified key functional modules. Drug enrichment analysis identified relevant compounds explored in the DsigDB. Through WGCNA, 13 key genes associated with anoikis and differentially expressed genes were identified. GO and KEGG pathway enrichment revealed the regulation of apoptotic signalling pathways and negative regulation of anoikis. PPI network analysis was also conducted, and 10 hub genes, such as IL1B, ZAP70, LCK, FASLG, CD4, LRP1, CDH2, MERTK, APOE and VTN were identified. IL1B were correlated with macrophages, mast cells, neutrophils and Tcells in MI, and the most common predicted medications were roxithromycin, NSC267099 and alsterpaullone. This study identified key genes associated with AMI and anoikis, highlighting their role in immune infiltration, diagnosis and medication prediction. These findings provide valuable insights into potential biomarkers and therapeutic targets for AMI.


Assuntos
Anoikis , Infarto do Miocárdio , Humanos , Anoikis/genética , Caderinas , Expressão Gênica , Infarto do Miocárdio/genética , Biomarcadores
7.
Cell Signal ; 118: 111126, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38453126

RESUMO

Cancer stem-like cells (CSLCs) and anoikis resistance play crucial roles in the metastasis of cancers. However, it remains unclear whether CSLCs are related to anoikis resistance in intrahepatic cholangiocarcinoma (ICC). Here we identified a group of stemness-related anoikis genes (SRAGs) via bioinformatic analysis of public data. Accordingly, a novel anoikis-related classification was established and it divided ICC into C1 and C2 type. Different type ICC displayed distinct prognosis, molecular as well immune characteristics. Furthermore, we found one key SRAGs via several machine learning algorithms. HK2 was up-regulated in tumor-repopulating cells (TRCs) of ICC, a kind of CSLCs with a potent resistance to anoikis. Its up-regulation may be caused by the activation of MTORC1 signaling in ICC-TRCs. And inhibition of HK2 significantly increased anoikis and decreased migration as well invasion in ICC-TRCs. Our studies provide an insight into the molecular mechanism underlying the resistance of ICC-TRCs to anoikis and enhance the evidences for targeting HK2 in ICC.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Humanos , Anoikis , Linhagem Celular Tumoral , Colangiocarcinoma/genética , Ductos Biliares Intra-Hepáticos/patologia , Neoplasias dos Ductos Biliares/genética , Proliferação de Células/genética
8.
Int Wound J ; 21(3): e14771, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38468369

RESUMO

This study aims to investigate the role of anoikis-related genes in diabetic foot (DF) by utilizing bioinformatics analysis to identify key genes associated with anoikis in DF. We selected the GEO datasets GSE7014, GSE80178 and GSE68183 for the extraction and analysis of differentially expressed anoikis-related genes (DE-ARGs). GO analysis and KEGG analysis indicated that DE-ARGs in DF were primarily enriched in apoptosis, positive regulation of MAPK cascade, anoikis, focal adhesion and the PI3K-Akt signalling pathway. Based on the LASSO and SVM-RFE algorithms, we identified six characteristic genes. ROC curve analysis revealed that these six characteristic genes had an area under the curve (AUC) greater than 0.7, indicating good diagnostic efficacy. Expression analysis in the validation set revealed downregulation of CALR in DF, consistent with the training set results. GSEA results demonstrated that CALR was mainly enriched in blood vessel morphogenesis, endothelial cell migration, ECM-receptor interaction and focal adhesion. The HPA database revealed that CALR was moderately enriched in endothelial cells, and CALR was found to interact with 63 protein-coding genes. Functional analysis with DAVID suggested that CALR and associated genes were enriched in the phagosome component. CALR shows promise as a potential marker for the development and treatment of DF.


Assuntos
Diabetes Mellitus , Pé Diabético , Humanos , Pé Diabético/genética , Anoikis/genética , Células Endoteliais , Fosfatidilinositol 3-Quinases , Algoritmos
9.
Cell Signal ; 117: 111104, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38373667

RESUMO

BACKGROUND: Anoikis is a distinctive type of apoptosis. It is involved in tumor progression and metastasis. But its function in castration-resistant prostate cancer (CRPC) remains veiled. We aimed to develop a prognostic indicator based on anoikis-related long non-coding RNAs (arlncRNAs) and to investigate their biological function in CRPC. MATERIAL AND METHOD: Differentially expressed anoikis-related genes were extracted from two CRPC datasets, GSE51873, and GSE78201. Four lncRNAs associated with the anoikis-related genes were selected. A risk model based on these lncRNAs was developed and validated in The Cancer Genome Atlas (TCGA) and the Memorial Sloan-Kettering Cancer Center (MSKCC) prostate cancer cohorts. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, immune infiltration, immune checkpoints expression, and drug susceptibility were performed based on the model. To identify the biofunction of anoikis-related lncRNA, CCK-8 assays, colony formation assays, and flow cytometry were used. RESULT: Twenty-nine anoikis-related genes were differentially expressed in the CRPC datasets. And 36 prognostic arlncRNAs were selected for the LASSO Cox analysis. Patients were subsequently classified into two subtypes by constructing an anoikis-related lncRNA based prognostic index (ARPI). The accuracy of this index was validated. KEGG enrichment analysis revealed that the high-ARPI group was enriched in cancer-related and immune-related pathways. Immune infiltration analysis has indicated a positive association between high-ARPI groups and increased immune infiltration. Fulvestrant, OSI-027, Lapatinib, Dabrafenib, and Palbociclib were identified as potential sensitive drugs for high-ARPI patients. In vitro experiments exhibited that silencing LINC01138 dampened the proliferation, migration and enzalutamide resistance in CRPC. Furthermore, it stimulated apoptosis and inhibited the eithelial-mesenchymal transition process. CONCLUSION: Four arlncRNAs were identified and a risk model was established to predict the prognosis of patients with prostate cancer. Immune infiltration and drug susceptibility analysis revealed a potential therapeutic strategy for patients with castration-resistant prostate cancer.


Assuntos
Neoplasias de Próstata Resistentes à Castração , RNA Longo não Codificante , Masculino , Humanos , Anoikis/genética , RNA Longo não Codificante/genética , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/genética , Citometria de Fluxo , Expressão Gênica
10.
Mol Cancer ; 23(1): 30, 2024 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-38341586

RESUMO

Bladder cancer ranks as the 10th most common cancer worldwide, with deteriorating prognosis as the disease advances. While immune checkpoint inhibitors (ICIs) have shown promise in clinical therapy in both operable and advanced bladder cancer, identifying patients who will respond is challenging. Anoikis, a specialized form of cell death that occurs when cells detach from the extracellular matrix, is closely linked to tumor progression. Here, we aimed to explore the anoikis-based biomarkers for bladder cancer prognosis and immunotherapeutic decisions. Through consensus clustering, we categorized patients from the TCGA-BLCA cohort into two clusters based on anoikis-related genes (ARGs). Significant differences in survival outcome, clinical features, tumor immune environment (TIME), and potential ICIs response were observed between clusters. We then formulated a four-gene signature, termed "Ascore", to encapsulate this gene expression pattern. The Ascore was found to be closely associated with survival outcome and served as an independent prognosticator in both the TCGA-BLCA cohort and the IMvigor210 cohort. It also demonstrated superior predictive capacity (AUC = 0.717) for bladder cancer immunotherapy response compared to biomarkers like TMB and PD-L1. Finally, we evaluated Ascore's independent prognostic performance as a non-invasive biomarker in our clinical cohort (Gulou-Cohort1) using circulating tumor cells detection, achieving an AUC of 0.803. Another clinical cohort (Gulou-Cohort2) consisted of 40 patients undergoing neoadjuvant anti-PD-1 treatment was also examined. Immunohistochemistry of Ascore in these patients revealed its correlation with the pathological response to bladder cancer immunotherapy (P = 0.004). Impressively, Ascore (AUC = 0.913) surpassed PD-L1 (AUC = 0.662) in forecasting immunotherapy response and indicated better net benefit. In conclusion, our study introduces Ascore as a novel, robust prognostic biomarker for bladder cancer, offering a new tool for enhancing immunotherapy decisions and contributing to the tailored treatment approaches in this field.


Assuntos
Antígeno B7-H1 , Neoplasias da Bexiga Urinária , Humanos , Prognóstico , Antígeno B7-H1/genética , Anoikis/genética , Progressão da Doença , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/terapia , Imunoterapia , Biomarcadores , Microambiente Tumoral
11.
J Cell Mol Med ; 28(4): e18113, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38332530

RESUMO

The resistance to anoikis plays a critical role in the metastatic progression of various types of malignancies, including gastric cancer (GC). Nevertheless, the precise mechanism behind anoikis resistance is not fully understood. Here, our primary focus was to examine the function and underlying molecular mechanism of Integrin beta-like 1 (ITGBL1) in the modulation of anoikis resistance and metastasis in GC. The findings of our investigation have demonstrated that the overexpression of ITGBL1 significantly augmented the resistance of GC cells to anoikis and promoted their metastatic potential, while knockdown of ITGBL1 had a suppressive effect on both cellular processes in vitro and in vivo. Mechanistically, we proved that ITGBL1 has a role in enhancing the resistance of GC cells to anoikis and promoting metastasis through the AKT/Fibulin-2 (FBLN2) axis. The inhibition of AKT/FBLN2 signalling was able to reverse the impact of ITGBL1 on the resistance of GC cells to anoikis and their metastatic capability. Moreover, the expression levels of ITGBL1 were found to be significantly elevated in the cancerous tissues of patients diagnosed with GC, and there was a strong correlation observed between high expression levels of ITGBL1 and worse prognosis among individuals diagnosed with GC. Significantly, it was revealed that within our cohort of GC patients, individuals exhibiting elevated ITGBL1 expression and diminished FBLN2 expression experienced the worst prognosis. In conclusion, the findings of our study indicate that ITGBL1 may serve as a possible modulator of resistance to anoikis and the metastatic process in GC.


Assuntos
Anoikis , Proteínas de Ligação ao Cálcio , Neoplasias Gástricas , Humanos , Anoikis/genética , Neoplasias Gástricas/patologia , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas da Matriz Extracelular , Linhagem Celular Tumoral , Metástase Neoplásica , Integrina beta1/genética
12.
IET Syst Biol ; 18(2): 41-54, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38377622

RESUMO

BACKGROUND: Gastric cancer (GC) is a frequent malignancy of the gastrointestinal tract. Exploring the potential anoikis mechanisms and pathways might facilitate GC research. PURPOSE: The authors aim to determine the significance of anoikis-related genes (ARGs) in GC prognosis and explore the regulatory mechanisms in epigenetics. METHODS: After describing the genetic and transcriptional alterations of ARGs, we searched differentially expressed genes (DEGs) from the cancer genome atlas and gene expression omnibus databases to identify major cancer marker pathways. The non-negative matrix factorisation algorithm, Lasso, and Cox regression analysis were used to construct a risk model, and we validated and assessed the nomogram. Based on multiple levels and online platforms, this research evaluated the regulatory relationship of ARGs with GC. RESULTS: Overexpression of ARGs is associated with poor prognosis, which modulates immune signalling and promotes anti-anoikis. The consistency of the DEGs clustering with weighted gene co-expression network analysis results and the nomogram containing 10 variable genes improved the clinical applicability of ARGs. In anti-anoikis mode, cytology, histology, and epigenetics could facilitate the analysis of immunophenotypes, tumour immune microenvironment (TIME), and treatment prognosis. CONCLUSION: A novel anoikis-related prognostic model for GC is constructed, and the significance of anoikis-related prognostic genes in the TIME and the metabolic pathways of tumours is initially explored.


Assuntos
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/diagnóstico , Neoplasias Gástricas/genética , Prognóstico , Anoikis/genética , Algoritmos , Biomarcadores , Microambiente Tumoral/genética
13.
Sci Rep ; 14(1): 3198, 2024 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-38332160

RESUMO

Bladder cancer (BLCA) is a malignant tumor associated with unfavorable outcomes. Studies suggest that anoikis plays a crucial role in tumor progression and cancer cell metastasis. However, its specific role in bladder cancer remains poorly understood. Our objective was to identify anoikis-related genes (ARGs) and subsequently construct a risk model to assess their potential for predicting the prognosis of bladder cancer.The transcriptome data and clinical data of BLCA patients were sourced from The Cancer Genome Atlas and GEO database. We then performed the differential expression analysis to screen differentially expressed ARGs. Subsequently, we conducted non-negative matrix factorization (NMF) clustering analysis to establish molecular subtypes based on the differentially expressed ARGs. The CIBERSORT algorithm was used to estimate the quantification of different cell infiltration in BLCA tumor microenviroment. A prognostic risk model containing 7 ARGs was established using Lasso-Cox regression analysis. The nomogram was built for predicting the survival probability of BLCA patients. To determine the drug sensitivity of each sample from the high- and low-risk groups, the R package "pRRophetic" was performed. Finally, the role of LYPD1 was explored in BLCA cell lines.We identified 90 differential expression ARGs and NMF clustering categorizated the BLCA patientss into two distinct groups (cluster A and B). Patients in cluster A had a better prognosis than those in cluster B. Then, we established a ARGs risk model including CALR, FASN, FOSL1, JUN, LYPD1, MST1R, and SATB1, which was validated in the train and test set. The results suggested overall survival rate was much higher in low risk group than high risk group. The cox regression analysis, ROC curve analysis, and nomogram collectively demonstrated that the risk model served as an independent prognostic factor. The high risk group had a higher level TME scores compared to the low risk group. Furthermore, LYPD1 was low expression in BLCA cells and overexpression of LYPD1 inhibits the prolifearation, migration and invasion.In the current study, we have identified differential expression ARGs and constructed a risk model with the promise for guiding prognostic predictions and provided a therapeutic target for patients with BLCA.


Assuntos
Proteínas de Ligação à Região de Interação com a Matriz , Neoplasias da Bexiga Urinária , Humanos , Anoikis/genética , Neoplasias da Bexiga Urinária/genética , Genes Homeobox , Bexiga Urinária , Nomogramas , Prognóstico
14.
BMB Rep ; 57(2): 104-109, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38303562

RESUMO

Gefitinib exerts anticancer effects on various types of cancer, such as lung, ovarian, breast, and colon cancers. However, the therapeutic effects of gefitinib on cervical cancer and the underlying mechanisms remain unclear. Thus, this study aimed to explore whether gefitinib can be used to treat cervical cancer and elucidate the underlying mechanisms. Results showed that gefitinib induced a caspase-dependent apoptosis of HeLa cells, which consequently became round and detached from the surface of the culture plate. Gefitinib induced the reorganization of actin cytoskeleton and downregulated the expression of p-FAK, integrin ß1 and E-cadherin, which are important in cell-extracellular matrix adhesion and cell-cell interaction, respectively. Moreover, gefitinib hindered cell reattachment and spreading and suppressed interactions between detached cells in suspension, leading to poly (ADP-ribose) polymerase cleavage, a hallmark of apoptosis. It also induced detachment-induced apoptosis (anoikis) in C33A cells, another cervical cancer cell line. Taken together, these results suggest that gefitinib triggers anoikis in cervical cancer cells. Our findings may serve as a basis for broadening the range of anticancer drugs used to treat cervical cancer. [BMB Reports 2024; 57(2): 104-109].


Assuntos
Antineoplásicos , Neoplasias do Colo do Útero , Feminino , Humanos , Anoikis , Gefitinibe/farmacologia , Células HeLa , Neoplasias do Colo do Útero/tratamento farmacológico , Apoptose , Antineoplásicos/farmacologia , Linhagem Celular Tumoral
15.
Aging (Albany NY) ; 16(3): 2273-2298, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38319706

RESUMO

BACKGROUND: Methods for predicting the outcome of lung adenocarcinoma (LUAD) in the clinic are limited. Anoikis is an important route to programmed cell death in LUAD, and the prognostic value of a model constructed with anoikis-related lncRNAs (ARlncRNAs) in LUAD is unclear. METHODS: Transcriptome and basic information for LUAD patients was obtained from the Cancer Genome Atlas. Coexpression and Cox regression analyses were utilized to identify prognostically significant ARlncRNAs and construct a prognostic signature. Furthermore, the signature was combined with clinical characteristics to create a nomogram. Finally, we performed principal component, enrichment, tumor mutation burden (TMB), tumor microenvironment (TME) and drug sensitivity analyses to evaluate the basic research and clinical merit of the signature. RESULTS: The prognostic signature developed with eleven ARlncRNAs can accurately predict that high-risk group patients have a worse prognosis, as proven by the receiver operating characteristic (ROC) curve (AUC: 0.718). Independent prognostic analyses indicated that the risk score is a significant independent prognostic element for LUAD (P<0.001). In the high-risk group, enrichment analysis demonstrated that glucose metabolism and DNA replication were the main enrichment pathways. TMB analysis indicated that the high-risk group had a high TMB (P<0.05). Drug sensitivity analyses can recognize drugs that are sensitive to different risk groups. Finally, 11 ARlncRNAs of this signature were verified by RT-qPCR analysis. CONCLUSIONS: A novel prognostic signature developed with 11 ARlncRNAs can accurately predict the OS of LUAD patients and offer clinical guidance value for immunotherapy and chemotherapy treatment.


Assuntos
Adenocarcinoma , Neoplasias Pulmonares , RNA Longo não Codificante , Humanos , Anoikis/genética , Prognóstico , RNA Longo não Codificante/genética , Pulmão , Neoplasias Pulmonares/genética , Microambiente Tumoral/genética
16.
Aging (Albany NY) ; 16(3): 2908-2933, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38329444

RESUMO

Non-small cell lung cancer (NSCLC) is the most common histological type of lung cancer. With the in-depth exploration of cell death manners, numerous studies found that anoikis is an important mechanism that associated with treatment. Therefore, we aimed to explore the prognostic value and treatment guidance of anoikis in NSCLC patients. In the current study, we first constructed a prognostic model based on the anoikis-related genes based on bulk RNA-sequencing and single-cell RNA-sequencing (scRNA-seq) dataset. Then, immuno-correlations of anoikis-related risk scores (ARGRS) were analyzed. In addition, HMGA1, a risky gene in ARGRS, was further explored to define its expression and immuno-correlation. Results showed that patients with higher ARGRS had worse clinical outcomes. Moreover, the five genes in the prognostic model were all highly expressed on tumor cells. Moreover, further analysis found that the ARGRS was negatively correlated with ImmuneScore, but positively with tumor purity. Besides, patients in the ARGRS-high group had lower levels of immunological characteristics, such as the immune-related signaling pathways and subpopulations. Additionally, in the immunotherapy cohorts, patients with the ARGRS-high phenotype were more resistant to immunotherapy and tended to not achieve remission after treatment. Last, HMGA1 was chosen as the representative biomarker, and analysis of the in-house cohort showed that HMGA1 was highly expressed in tumor tissues and correlated with decreased T cell infiltration. To sum up, ARGRS was correlated with a desert tumor microenvironment and identified immune-cold tumors, which can be a novel biomarker for the recognition of immunological characteristics and an immunotherapeutic response in NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/genética , Proteína HMGA1a , Neoplasias Pulmonares/genética , Anoikis/genética , Prognóstico , Biomarcadores , RNA , Microambiente Tumoral/genética
17.
Aging (Albany NY) ; 16(3): 2887-2907, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38345559

RESUMO

Lung adenocarcinoma (LUAD) is a malignant tumor of the respiratory system that has a poor 5-year survival rate. Anoikis, a type of programmed cell death, contributes to tumor development and metastasis. The aim of this study was to develop an anoikis-based stratified model, and a multivariable-based nomogram for guiding clinical therapy for LUAD. Through differentially expressed analysis, univariate Cox, LASSO Cox regression, and random forest algorithm analysis, we established a 4 anoikis-related genes-based stratified model, and a multivariable-based nomogram, which could accurately predict the prognosis of LUAD patients in the TCGA and GEO databases, respectively. The low and high-risk score LUAD patients stratified by the model showed different tumor mutation burden, tumor microenvironment, gemcitabine sensitivity and immune checkpoint expressions. Through immunohistochemical analysis of clinical LUAD samples, we found that the 4 anoikis-related genes (PLK1, SLC2A1, ANGPTL4, CDKN3) were highly expressed in the tumor samples from clinical LUAD patients, and knockdown of these genes in LUAD cells by transfection with small interfering RNAs significantly inhibited LUAD cell proliferation and migration, and promoted anoikis. In conclusion, we developed an anoikis-based stratified model and a multivariable-based nomogram of LUAD, which could predict the survival of LUAD patients and guide clinical treatment.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Humanos , Anoikis/genética , Adenocarcinoma de Pulmão/genética , Biomarcadores , Biologia Computacional , Neoplasias Pulmonares/genética , Prognóstico , Microambiente Tumoral/genética
18.
Artif Cells Nanomed Biotechnol ; 52(1): 156-174, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38423139

RESUMO

Osteoarthritis (OA) is a degenerative disease closely associated with Anoikis. The objective of this work was to discover novel transcriptome-based anoikis-related biomarkers and pathways for OA progression.The microarray datasets GSE114007 and GSE89408 were downloaded using the Gene Expression Omnibus (GEO) database. A collection of genes linked to anoikis has been collected from the GeneCards database. The intersection genes of the differential anoikis-related genes (DEARGs) were identified using a Venn diagram. Infiltration analyses were used to identify and study the differentially expressed genes (DEGs). Anoikis clustering was used to identify the DEGs. By using gene clustering, two OA subgroups were formed using the DEGs. GSE152805 was used to analyse OA cartilage on a single cell level. 10 DEARGs were identified by lasso analysis, and two Anoikis subtypes were constructed. MEgreen module was found in disease WGCNA analysis, and MEturquoise module was most significant in gene clusters WGCNA. The XGB, SVM, RF, and GLM models identified five hub genes (CDH2, SHCBP1, SCG2, C10orf10, P FKFB3), and the diagnostic model built using these five genes performed well in the training and validation cohorts. analysing single-cell RNA sequencing data from GSE152805, including 25,852 cells of 6 OA cartilage.


Assuntos
Anoikis , Osteoartrite , Humanos , Anoikis/genética , Aprendizado de Máquina , Caderinas , Osteoartrite/diagnóstico , Osteoartrite/genética , Análise de Sequência de RNA , Proteínas Adaptadoras da Sinalização Shc
19.
Aging (Albany NY) ; 16(4): 3915-3933, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38385949

RESUMO

BACKGROUND: Clear cell carcinoma (ccRCC) usually has a high metastasis rate and high mortality rate. To enable precise risk stratification, there is a need for novel biomarkers. As one form of apoptosis, anoikis results from the disruption of cell-cell connection or cell-ECM attachment. However, the impact of anoikis-related lncRNAs on ccRCC has not yet received adequate attention. METHODS: The study utilized univariate Cox regression analysis in order to identify the overall survival (OS) associated anoikis-related lncRNAs (ARLs), followed by the LASSO algorithm for selection. On this basis, a risk model was subsequently established using five anoikis-related lncRNAs. To dig the inner molecular mechanism, KEGG, GO, and GSVA analyses were conducted. Additionally, the immune infiltration landscape was estimated using the ESTIMATE, CIBERSORT, and ssGSEA algorithms. RESULTS: The study constructed a novel risk model based on five ARLs (AC092611.2, AC027601.2, AC103809.1, AL133215.2, and AL162586.1). Patients categorized as low-risk exhibited significantly better OS. Notably, the study observed marked different immune infiltration landscapes and drug sensitivity by risk stratification. Additionally, the study preliminarily explored potential signal pathways associated with risk stratification. CONCLUSION: The study exhibited the crucial role of ARLs in the carcinogenesis of ccRCC, potentially through differential immune infiltration. Furthermore, the established risk model could serve as a valuable stratification factor for predicting OS prognosis.


Assuntos
Carcinoma de Células Renais , Carcinoma , Neoplasias Renais , RNA Longo não Codificante , Humanos , Carcinoma de Células Renais/genética , Anoikis/genética , RNA Longo não Codificante/genética , Prognóstico , Neoplasias Renais/genética
20.
Math Biosci Eng ; 21(1): 1590-1609, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38303479

RESUMO

As a type of programmed cell death, anoikis resistance plays an essential role in tumor metastasis, allowing cancer cells to survive in the systemic circulation and as a key pathway for regulating critical biological processes. We conducted an exploratory analysis to improve risk stratification and optimize adjuvant treatment choices for patients with breast cancer, and identify multigene features in mRNA and lncRNA transcriptome profiles associated with anoikis. First, the variance selection method filters low information content genes in RNA sequence and then extracts the mRNA and lncRNA expression data base on annotation files. Then, the top ten key mRNAs are screened out through the PPI network. Pearson analysis has been employed to identify lncRNAs related to anoikis, and the prognosis-related lncRNAs are selected using Univariate Cox regression and machine learning. Finally, we identified a group of RNAs (including ten mRNAs and six lncRNAs) and integrated the expression data of 16 genes to construct a risk-scoring system for BRCA prognosis and drug sensitivity analysis. The risk score's validity has been evaluated with the ROC curve, Kaplan-Meier survival curve analysis and decision curve analysis (DCA). For the methylation data, we have obtained 169 anoikis-related prognostic methylation sites, integrated these sites with 16 RNA features and further used the deep learning model to evaluate and predict the survival risk of patients. The developed anoikis feature is demonstrated a consistency index (C-index) of 0.778, indicating its potential to predict the survival probability of breast cancer patients using deep learning methods.


Assuntos
Neoplasias da Mama , RNA Longo não Codificante , Humanos , Feminino , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Neoplasias da Mama/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Perfilação da Expressão Gênica , Metilação de DNA , Anoikis/genética , Regulação Neoplásica da Expressão Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...